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Abstract. Weask whether animals can derive spatial

information from temporal patterns contained in turbu-

lent odor plumes under realistic biological constraints of

receptor properties (size and physiological responses)

and behavioral requirements (time averaging). Wemod-

eled an appropriately scaled aquatic odor plume with a

salt tracer to serve as the input to two different lobster

chemoreceptor organs.

We then constructed a computer model based on

some of the currently known temporal filtering charac-

teristics of lobster chemoreceptor cells in situ. The out-

put of this model represents the supra-threshold stimulus

intensity fluctuations "seen" by realistically adapting

cells. The input and output of the model were evaluated

for directional information. Wefocused on four parame-

ters that characterize concentration peaks within the

plume: height, length, maximum rising slope, and off

time (time between peaks). These characteristics were

analyzed under two biologically important sampling

strategies: one corresponding to a continuous-sampling

receptor organ (e.g., lobster leg, catfish nose) and the

other to a discrete-sampling receptor organ (e.g., lobster

nose, tuna nose). Welet the discrete-sampling model an-

alyze at a frequency of four sniffs per second, each aver-

aging over 100 ms. The continuous-sampling model

used an historic exponential average of 25, 100, or 1000

ms based on disadaptation rates of receptor cells in situ.

In this preliminary study, filtered odor spectra con-

tained less biologically useful information than the un-

filtered input spectra. Discrete and continuous models

were not different. In all cases, the probability distribu-
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tion of maximum rising slopes of stimulus concentration

contained the most reliable directional information.

Introduction

Various terrestrial and aquatic animals show remark-

able abilities to orient in turbulent odor plumes. Consid-

ering the non-directionality of odor signals per se. we hy-

pothesized that turbulent odor dispersal processes might

create spatial patterns that could serve as directional

cues, and that chemoreceptor organs may have temporal

filter properties that match dominant spatial frequencies

of odor plumes at size scales relevant to the animals and

their receptor organs (Atema, 1985, 1988: Derby and

Atema, 1988). Dispersal of an odor into a fluid volume

occurs over a wide range of size scales. At size scales less

than 1-10 mm, molecular diffusion determines the dis-

tribution of odor in the environment, whereas at scales

larger than 1-10 mmadvection dominates the dispersal

process. Aquatic systems are likely to be turbulent at

scales larger than 10 mm. This is the size scale of most

macroscopic animals.

While turbulence is chaotic and thus not predictable

at any instant in time or space, it has predictable patterns

when spatial and/or temporal averages are taken. Mean

distributions of turbulent odor dispersal can be predicted

by Sutton's model (1953). This model is based on a con-

tinuously and constantly emitting odor source and as-

sumes that the average odor concentration will follow a

normal (Gaussian) distribution in any plane perpendicu-

lar to the down-current axis. The time-averaged odor

plume increases in area and decreases in concentration

exponentially with distance from the source. This model

describes a continuous (non-patchy) odor distribution
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within the plume. To establish a reasonable approxima-

tion to a Gaussian distribution under the conditions con-

sidered by Sutton, an averaging time of several minutes

is required (Pasquill, 1961; Gifford, 1968; Miksad and

Kittredge, 1979; and Elkinton, et al. 1984). Predicting

animal responses from such time-averaged models has

proven inadequate in some cases; when orientating to-

ward the source of a pheromone plume, gypsy moths did

not appear to time-average on the same scale as the Sut-

ton model (David et al, 1982; Elkinton et al, 1984). It

is obvious that animals do not always have the "luxury"

of waiting a few minutes to take an average! They may
have to make behavioral decisions in as short a time pe-

riod as the circumstances demand. This requires analysis

of more instantaneous parameters of odor plumes.

The instantaneous distribution of odor within a turbu-

lent odor plume is quite different from Sutton's (1953)

time-averaged distribution (Wright, 1958; Aylor, 1976;

Aylor et al. 1976; Shorey, 1976; and Murlis and Jones,

1981). Instantaneous plumes meander, and break up
into filaments and patches. Instantaneous odor distribu-

tions follow local environmental turbulence. Turbulent

eddies occur simultaneously over a range of sizes. The

largest eddies pass down their energy into smaller and

smaller eddies until the energy finally dissipates. Eddies

of the size scale of an odor filament cause it to break up
into patches; smaller eddies redistribute the odor within

the patches and cause decreases in the odor concentra-

tion gradients at patch edges; larger eddies move the en-

tire odor plume and cause meandering. For a more com-

plete description of Gaussian and instantaneous odor

plumes see Elkinton and Carde (1984). The result of a

patchy odor distribution is that an animal located down-

wind of an odor source will experience periods of odor

concentration well above and below the mean concen-

tration.

Measurements of the instantaneous structure of odor

plumes are needed to understand which dynamic charac-

teristics of the plume are the best indicators for orienta-

tion within the plume. These measurements must be

made at spatial and temporal sampling scales an order of

magnitude greater than those relevant to chemorecep-
tors or the animal behavior under consideration: differ-

ent animals and different receptor organs have their own
characteristic time and space scales (Atema, 1985, 1988).

At present, spatial scales for receptor organs must be esti-

mated from their morphology and in some cases from

preliminary data on flow fields (Vogel, 1983; Moore and

Atema, unpub.). Temporal scales relevant to chemore-

ceptor organs are poorly known; they must be estimated

from still-rare physiological response data (Kaissling et

al. 1987; Voigt and Atema, 1987a, b; Christensen and

Hildebrand, 1988). Eventually, models must be adjusted

to accommodate these species-specific scales.

Our study was designed to measure odor dispersal at

the sampling scales of two lobster (Homarus america-

nus) chemoreceptor organs, the antennules (olfaction)

and legs (taste). To model an odor plume at a size scale

of relevance to a lobster we chose a velocity and volume

similar to the filter feeding current of a single mussel

Mytilus edulis. a commonprey of lobsters. A filter-feed-

ing mussel generates a turbulent odor plume of metabo-

lites; this plume is carried away and redistributed by
ocean currents. The pumping rates of M. edulis range

from0to50ml/min(Kirby-Smith, 1972; Winter, 1978).

The model plume was generated by continuous injection

of a salt tracer ("the mussel") in a fresh water flume ("the

ocean").

For H. americanus, odor cues appear to be more im-

portant than rheotaxis in orientation to distant odor

sources (McLeese, 1973). Since removal of one lateral

antennule results in random direction choice, directional

decisions seem to be based on a comparison of input

from the two lateral antennules (Devine and Atema,

1982). Similar results were obtained in odor orientation

experiments with the spiny lobster, Panulirus argus

(Reeder and Ache, 1980).

Flicking of the lateral antennules decreases the bound-

ary layer around the dense clusters of 1 mmlong aesthet-

asc sensilla (Snow, 1973; Moore and Atema, unpub.

obs.) and appears to be the functional equivalent of ver-

tebrate sniffing. Flicking probably determines the spatial

and temporal frequency filtering of the chemoreceptor
cells of the antennule (Schmitt and Ache, 1979; Atema,

1985). H. americanus antennules can flick with burst

rates of 4 s
_1

(pers. obs.). Once in the general vicinity,

lobsters use their legs to locate and recognize food; for

this, leg chemoreception is essential (Derby and Atema,

1982). Legs wave but do not flick: they seem to sample
odor plumes continuously.

The exact sampling frequency and volume relevant to

lobster chemoreceptors are not yet known. Temporal
filters result from boundary layer plus cellular adaptation

(Borroni and Atema, 1987) and disadaptation rates

(Voigt and Atema, 1987a, b). From these data and re-

sponse rates obtained in insect pheromone receptor cells

(Kaissling et al. 1987; Christensen and Hildebrand,

1 988), we estimate that lobster leg receptors might follow

pulse rates of 0.1-10 s"
1

. Spatial scales are estimated to

be on the order of 1-10 mm.To resolve slopes of concen-

tration peaks, i.e.. rate of increase of odor concentration,

we sampled the odor plume at 40 s"
1

, an order of magni-
tude faster than the estimated sampling (i.e.. flicking) fre-

quency of our biological filters under study.

Weanalyzed our "model plume" with the two differ-

ent sampling methods: continuous i.e., the slow move-

ments of a lobster leg, and discrete i.e., the fast flicking

of lobster antennules. These two sampling methods also
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Figure 1 . Diagram of flume used for salt plume turbulence mea-

surements at the size and time scale of lobster chemoreceptor organs.

Probes shown at each of the four sites; only one probe was in the water

during the measurements, all taken in the cross-sectional center of the

plume.

exist in the functional designs of fish noses. Fish have

been classified (Doving et al, 1977) as isosmates (contin-

uous ciliary flow, e.g., catfish) and cyclosmates

("sniffing" via accessory pumps and muscles, e.g., tuna).

Overall, our model was designed to represent the stimu-

lus pulse patterns that a chemoreceptor cell in situ with

known temporal filter characteristics might detect within

the odor plume emanating from a pumping mussel lo-

cated a short distance upcurrent. The first generation

model is meant to define critical parameters, particularly

those for which little or no information is yet available.

Materials and Methods

Plume model

To generate the model plume we used a 248 cm X 34

cm X 23 cm flume with a tap water flow (1.2 ± .21 /min)

(Fig. 1). This carrier flow passed through three sheets of

window screen, and a collimator of 5 mmdiameter soda

straws 22 cm long. The test area was 142 cm long. An-

other row of 1 0-cm long soda straws was placed before

the outflow tube. The flow velocity in the center of the

test area was 2.2 ± 0.2 cm/s measured by timing the

movement of a patch of dye.

The tracer plume was a 0.7% NaCl solution injected at

50 ± 1 ml/min. into the test area of flow through a Pas-

teur pipette with 1 mmID tip opening. Flow velocity at

the nozzle was 25 cm/s (Re « 500). The nozzle of the

pipette was 10 cm down-stream from the collimator, 7

cm from the bottom and equidistant from the sides. A
dye was mixed in with the salt solution to visually locate

the plume center line. Although the tracer was somewhat

denser than the surrounding water, it did not drop sig-

nificantly over the sampling area.

As an indicator of instantaneous salt concentration we
measured conductivity (YSI model #35) around two sil-

ver wire (gauge 30) electrodes each with an exposed

length of 1 cm. The wires were spaced 1 cm apart to give

a spatial sampling area of 1 cm2
. These dimensions were

chosen to approximate the 1 ml estimated sample vol-

ume of one lobster flick, or the slow flow volume imme-

diately surrounding a lobster leg. The output from the

conductivity meter was monitored on a chart recorder

(Gould Brush model #220) and recorded on an FMtape

recorder ( Vetter model D) for later computer analysis.

Salt concentrations were measured at four sites, each

in the center line of the plume: 12.5, 25, 34.5, and 50

cm from the pipette mouth. The plume center line was

located by first sighting the dye. Once the probe was posi-

tioned it was left there for 1.5 min before recording a 7.5

min sample. One 7.5 min sample was taken at each site.

The four 7.5-min analog samples were replayed from

the tape recorder through an AD converter into a IBM
PCcomputer. The sampling rate of the computer was set

at 40 s
_1

, i.e., the computer sampled the tape every 25

ms for 9 ns to derive a data point. Although the 40 s~'

rate was chosen to be 10X the lobster flicking sample rate

it also represented, perhaps fortuitously, the maximum

frequency of turbulence in the plume without including

high frequency noise of the recording system.

A set of known and fixed salt concentrations were re-

corded and played through the AD converter to con-

struct a calibration curve for the entire salt concentration

recording system. This allowed the computer voltage

data to be expressed as actual salt "stimulus" concentra-

tions.

The salt plume appeared as a series of concentration

peaks of varying strength and duration. They represent

a typical turbulence spectrum (Murlis and Jones, 1981;

Atema, 1985). As expected the peaks flattened with dis-

tance downstream from the source (Fig. 2). These turbu-

lence spectra were used as the input data for our receptor

filter model.

Receptor filter model

For the discrete-sampling "nose" we assumed that the

receptors will average the sample over a period of 100 ms

(approximate time for the down-stroke of the antennule)

and then "wait" 1 50 ms while the antennule recovers for

the next downstroke. Preliminary observations (unpub.)

showed that the down-stroke thoroughly mixes the odor

distribution in the sampling space. Therefore, we used a

centered arithmetic mean of the concentrations encoun-

tered over the 100 ms sample period. F »r the continuous

sampling nose, we assumed it averages over 25 ms.

Receptor cells adapt and disadapt as they sample. For

initial simplicity, we base this model on data from self-

adaptation experiments, i.e., adaptation to the same

compound(s). The instantaneous adaptation state of a
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Figure 2. Typical turbulence spectra of salt concentrations in the

plume. Random 30 s segments from 7.5 minute recordings, one at each

site. A-D: Distances from the pipette mouth to the plane of the elec-

trodes. The plume changes its turbulent character rather abruptly be-

tween 25 and 34.5 cm. It is not until 50 cm from the source that the

larger scale turbulence causes sufficient meander to result in periods of

zero signal.

all previous samples contribute to the current adaptation

state of the receptor cell —even those that did not result

in output from the cell (e.g., Fig. 3, subthreshold sample
bar at t

= -2, etc.). In addition, for the sake of simplicity,

we used the unmodified input data as the basis for each

new point. (In doing so we did not take into account pos-

sible interactive effects that may exist between samples,

e.g., strong pulses early in the period T reduce the stimu-

lating effectiveness of pulses later in the period T due to

biochemical adaptation of the cell; if adaptation is a re-

sult of excitation, these strong pulses may then reduce

the effectiveness of later pulses in suppressing the re-

sponse at t
=

0).

W
t

was used as the weight factor in a "historical"

weighted mean (A) in equation 2:

A = S(C, X W
t )/SW, (2)

where A is the adaptation state of the receptor at time t,

and C, is the stimulus concentration at time t. The weight

portion (W,/2W t ) of equation 2 is visualized in Figure 3

(dotted curve). This curve reflects the amount of adapta-

tion (= threshold increase) that the 40 sample bins prior

receptor cell is measured as its response threshold and is

dependent on past concentrations sampled. Weassumed

that receptor cells self-adapt within seconds (see Borroni

and Atema, 1987, and in prep.) and for this model we

use instantaneous and complete adaptation immediately

following any sample period (i.e., 100 ms for discrete

sampling and 25 ms for continuous sampling). Pre-

viously encountered concentrations will have cumula-

tive effects on the current adaptation state of the cell. We
considered a total period of effectiveness of T = 10 s, an

estimate based on the disadaptation time course of tau-

rine and glutamate receptor cells in situ which range

from 2.5-40 s for complete disadaptation from a 1-s glu-

tamate or taurine pulse 1-3 log steps above a taurine or

glutamate background (Voigt and Atema, 1987a, b). The

magnitude of these effects depends on the magnitude of

the previously sampled concentrations and the time (t in

s) since their occurrence. Weassumed that the effect of

a previous concentration upon the cell's instantaneous

adaptation state decays exponentially with time. Based

on the presumed disadaptation time course of taurine

and glutamate receptor cells in situ, we generated equa-

tion 1 to determine the weight factor (W,) by which the

response of the cell at t = should be reduced due to

each of the 40 samples in the previous period (T = 10 s).

W, =
exp(l + 0.4 X (T -

t))/100 (1)

The numbers 1, .4, and 100 were chosen to scale the

height and rate of decay of the curve to the height and

time scale of the input data. This model assumes that

Figure 3. Five second sample of salt plume concentration spectrum

(solid curve; salinity in ppt) and sampling bins (vertical bars) from dis-

crete sampling model. Total height of a bar represents mean unfiltered

concentration encountered during sample period; width of bar repre-

sents sampling time bin (one flick = 100 ms). Cross-hatched portion of

bar represents perceived concentration, i.e., above the cell's instanta-

neous threshold (= adaptation level: broken line) caused by previous

samples taken. The model assumes constant flicking at 4 s~ '; for clarity

not all sample bins are shown, except in the last 1.5 s. Only sampled
concentrations contribute to adaptation; concentrations in between

sample periods go "unnoticed." In this example, a hypothetical cell

with 10 s disadaptation time is used; the exponential function (dotted

line) represents the time-dependent amount of suppression (% of re-

sponse at t = 0) caused by preceding stimuli: recent samples (e.g., t

= -
1 ) have greater effects (6.2% of sample at t

= -
1 ) on the response

at t = than earlier samples (eg., t
= -5; 1.1% of sample value at t

= -5); samples prior to t
= - 10 no longer affect the response to a sam-

ple at t
= 0.
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Figure 4. Concentration spectra from the 1 2.5 cm sample site (Fig.

2A) filtered with different disadaptation times. A. Unfiltered spectra

(from Fig. 2A). B, C, D. Spectra representing instantaneous adaptation

state of these different receptor cells with very fast (B), fast (C), and slow

(D) disadaptation characteristics. Disadaptation time is based on the

assumptions of instantaneous adaptation and an exponential disadap-

tation time course as shown in Figure 3. The 10,000 ms filter results in

a smooth concentration average similar to the broken line of Figure 3.

to t
= contribute to the overall adaptation state at t = 0.

In Figure 3 we visualize a series of "flicks" as they sample

the input concentration profile (solid line). The response

to a pulse at t
= is affected by the cell's exposure to a

series of previous concentrations (measured in 100 ms

sample bins every 250 ms for 10 s). The effect of each

of the previously sampled concentrations is given by an

exponentially decaying function from t = 0tot = -10s.

For example, the sample bar at t = -5 registered 0.33 ppt

salinity; it raises the threshold at the t
= sample by

about 1% or 0.0033 ppt. The sample at t = -
1 registered

about the same salinity but, being more recent, its effect

on raising the threshold at t = is 6% or 0.0198 ppt.

The sum effect of all samples during T causes the cell's

threshold to be raised: the hatched portion of the bar is

supra-threshold. The threshold curve (broken line of Fig.

3) represents a moving average of points generated as de-

scribed above.

For the continuous sampling filter model we assumed

that the receptor cell integrates over a fixed (e.g., 25 ms)
time bin, then integrates over the immediately following

25 ms bin, etc. The samples taken in previous time bins

influence the response to the sample at t
= as in the

discrete sampling model except that now the bins follow

each other directly. Wechose disadaptation times of T
=

.1, 1, and 10 s for the continuous sampling model.

Thus, with the input data sampled every 25 ms, the . 1 s

( 100 ms) disadaptation time bin contains four points, 1

s contains 40 points, and the 10 s contains 400 points

(Fig. 4).

To analyze peak characteristics of the odor plume we
had to define a peak and assign a baseline, i.e., a stimulus

background level to which a real receptor cell would be

adapted. The background is evident when stimulus con-

centrations return to undetectable levels after a burst of

stimulus pulses (Fig. 2D). However, when pulses con-

tinue to follow so rapidly that stimulus concentrations

remain elevated between pulses (Fig. 2A, B) we must

adopt a quantitative rule for a background. Wechose the

background levels that result from integration over 10 s,

i.e., the cell was assumed to see peaks superimposed on

one of the concentration averages of Figure 5. A peak is

then defined as starting and ending at the appropriate

background. In addition, only when the concentration

value between two peaks dropped below 30% of the

height of the previous peak, were the peaks considered

separate.

For both the discrete and continuous model, four

stimulus peak parameters were measured: height, from

the maximum value of the peak to background; length,

from beginning to ending of peak as defined above; off

time, time from the end of one peak to the beginning of

the next peak; and maximum slope on the rising side of

the peak, calculated as the maximum value of the double

linear concentration-time tangent, measured as ppt per

25 ms sample bin. Examples of these are shown in Fig-

ure 6.

Results

Since the number of samples taken for making a direc-

tional decision by animals orienting in a plume might

12.5 cm
25 cm
34.5 cm
50 cm

0.3

C 0.2

Z

0.1

~1
—

10

TIME (s)

-
1

—
20 30

Figure 5. Concentration spectra at each of the four sample sites

(Fig. 2) at an averaging time of 10,000 ms (10 s). This low-pass filter

results in a "mean stimulus concentration." These means represent the

cell's response threshold in the stimulus conditions of the four sites;

they were used as baselines for peak measurements.
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TIME (s)

Figure 6. Unfiltered salt plume spectra from 50 cm site demonstrat-

ing the peak parameters analyzed. Peak height, measured against a

baseline (Fig. 5) reflecting the presumed adaptation state of the receptor

(baseline shown here: zero). Peak length, time from the beginning to

ending of peak (see text). Off time, time of no signal, between successive

peaks. Peak slope, maximum slope on the rising side of the peak.

o.s

£ 0.4

% 03
s
§ 0.2

£ .4 .0 . 1.0

PEAK SLOPE (p.p.t. / 25 mi)

OFF TIME (a)



TEMPORALFILTER MODEL 361
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Figure 9. Effect of averaging time on the probability distribution

of maximum peak slopes representing chemoreceptors with different

disadaptation times (A. B, C) from the continuous flow model. D is an

expanded version of C.

changing disadaptation times, the potential directional

information content of the parameter stays constant

also. The same was found for the other three peak param-
eters. Therefore, receptor cells with different averaging

periods cannot improve on this situation.

Discussion

This study accomplished two goals. First, we measured

the turbulent spectrum in an odor plume scaled such that

it might be realistic for a lobster searching for an odor

source. Both the spatio-temporal scale of the plume itself

and the spatial average taken by the "receptor," i.e., the

electrode size and spacing, were lobster-like. Second, we
constructed a first-generation temporal filter model that

reflects the biological reality that receptor cells adapt to

ambient concentrations where electronics do not unless

specifically instructed. Our instructions were based on

preliminary physiological data on self-adaptation and

disadaptation rates of chemoreceptor cells in situ, i.e.,

including the boundary layer normally present. The filter

model must be adjusted as physiological data and

boundary layer measurements accumulate.

The turbulent spectrum of any plume is highly depen-
dent upon the physical conditions of the environment.

To develop this first model, we chose one specific plume
condition: a constantly pumping mussel under one lami-

nar carrier flow condition and we sampled only at four

locations. In the future, extensive sampling must be done
under various flow conditions and with different odor

sources encountered in the natural environment of the

H. americanus.

As the plume ages the physics of turbulent dispersal

changes the values of plume parameters, i.e., peak slopes

get less steep, peak heights fall, etc. From a spatial com-

parison of these changes, animals could estimate source

distance and direction. Distance information might be

used to assess if it is energetically worthwhile (consider-

ing hunger, predators, etc.) to proceed to the source or to

stay put: the longer a plume has been in the environment

the higher the probability that the source is gone, e.g., a

competitor may have found and exploited the source. In

addition, animals that have no earth reference (such as

visual or contact cues of the ground) to determine cur-

rent direction may use spatial sampling of turbulent

plumes to determine source direction. Our filter model
can be used to analyze which properties of turbulent

plumes and which physiological and behavioral sam-

pling strategies provide the best information.

The strength of any model lies in its ability to rigidly

define one's assumptions and hence show which assump-
tions do not correspond with biological or physical real-

ity. One of these inconsistencies may already be appar-
ent. Wesuggested (Atema, 1985, 1987, 1988) that tem-

poral filter properties of chemoreceptor cells may be

matched to those dominant spatial frequencies of turbu-

lence that contain important biological information. We
had thus expected that filtered turbulence spectra would

contain more directional information. Instead we found

less separation in the filtered probability distributions of

peak slopes than in the unfiltered distribution (Fig. 10).

Since the biological assumption of matching of filters

seems reasonable and is found in many other sensory

systems we must first examine and refine the model be-

fore concluding that chemoreceptors are exceptionally

constrained by the physics of the microenvironment (De

Simone, 1981) or perhaps by the biochemical processes

of sensory transduction.

Various assumptions must be re-evaluated in light of

t

aa
<
CD
O
OS
0*

.25 .5 .75 1.0 1.25 1.5

PEAK SLOPE (p.p.t. / 25 ms)

Figure 10. Probability distribution of unfiltered peak slopes (Fig. 2)

continuously sampled every 25 ms at the four sample sites, against an

absolute 0.02 ppt salinity threshold.
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future physiological results. There is insufficient knowl-

edge of the adaptation and disadaptation time courses of

various chemoreceptors and, in particular, on the contri-

bution of the boundary layer. This affects the adaptation

level of the cells against which peaks are measured.

"Peak height against background" may be a more impor-

tant parameter for orientation than we conclude from

the current model. Furthermore, if cell excitation deter-

mines its level of adaptation then we must revise the ex-

ponential function ( 1 ) we used here, and use response

output, not stimulus input, as the basis from which to

calculate adaptation state. Finally, we know nothing

about the time over which chemoreceptor cells integrate.

Some photoreceptors integrate over 500 ms under very

low photon density conditions (Fein and Szuts, 1982).

Our 25- 1 000 ms assumption for chemoreceptors may or

may not be realistic. It corresponds to fast reaction times

measured elsewhere (Kelling and Halpern, 1983). If

boundary layers form the rate limiting factor determin-

ing response latency then data from very different che-

moreceptor organs can be compared.

Chemoreceptor cells may function under rather severe

physical constraints. Every interface between a solid and

a fluid, be it air or water, results in a boundary layer (Trit-

ton, 1977; Vogel, 1981). Close to the solid surface fluid

motion approaches zero velocity. Chemical stimuli can

penetrate through this inner portion of the boundary

layer only by molecular diffusion. The thickness of this

diffusion layer may be a critical constraint not only on

response latency (De Simone, 1981) but also on the tem-

poral resolution of chemoreceptor cells since diffusion

time increases geometrically with distance. Latency and

temporal resolution are obviously related. A diffusion

layer will act as an integrating filter, and hence a low pass

filter, reducing the frequency response of the receptor

system to lower frequencies than those present in the free

flow around the organ (Fig. 2). The critical difference be-

tween flicking and non-flicking may be reduction of the

boundary layer by high-velocity flicks. The present anal-

ysis showed no significant difference in discrete and con-

tinuous sampling. This may change with more extensive

analysis of different plumes and more refined assump-
tions. Measurements of boundary layers under biologi-

cally realistic conditions must be made, and the results

added to this model as integrating filters with diffusion

layer thickness as a parameter. To this must be added the

subsequent diffusion distances from the surface of the re-

ceptor organ to the receptor site requiring accurate mor-

phological measurements of receptor sensilla. The re-

maining filtering is then probably due to biochemical

processes.

This model and its subsequent refinements can be

used to describe and analyze different odor plumes ex-

tensively. This will give insight into those turbulent fea-

tures that are most suitable for biological use given the

intrinsic constraints of chemoreceptor physiology and

morphology. Animal behavior may become involved as

an animal searches an odor plume for useful features. In

this context it may be interesting to refer to the sudden

difference in turbulent spectra between the two very sim-

ilar near sites and the two quite similar far sites (Figs. 2,

5, 7, 8, 9, 10). Such sudden breaks are not uncommon
in turbulent plumes and may serve as useful biological

indicators of nearness to the source. In general, we expect

that this model will help us see to what degree the physics

of the environment constrain the ability of chemorecep-
tors to extract spatial and temporal features of natural

odor distributions that might be useful for orientation.
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